
- 1 - 

Measuring Inference Performance of Machine-Learning Frameworks on Edge-
class Devices with the MLMark™ Benchmark 

 
Peter Torelli 

President, EEMBC 
peter.j.torelli@eembc.org 

 

Mohit Bangale 
Senior Engineer - ML, Ignitarium 
mohit.bengale@ignitarium.com 

 
 
 
 
 
 

 
 

 
 

This paper explains how EEMBC—a non-profit 
consortium of embedded technology companies— 
developed the MLMark benchmark for characterizing 
machine-learning inference on edge devices, and 
discusses results obtained running the benchmark on 
multiple accelerators. 

1 Introduction 
In the past five years, machine learning (ML) as a 

practical application has consumed the vast majority of 
research in computer engineering. Despite 50 years of 
research on this topic, only recently has the 
technological environment exposed researchers to 
affordable, high-performance computers designed for 
ML acceleration. The cloud-edge paradigm is entirely 
suited to ML development: training done in the cloud, 
with its bottomless-well of compute resources, and 
inference performed on the edge, at a billion locations in 
a space once referred to as “ubiquitous computing.” In 
this paper we are interested in the characteristics of the 
billions of tiny devices rapidly emerging at the edge. 
These devices have significant constraints on energy use, 
size and cost; constraints which point back to a need for 
effective performance analysis, which in turn requires an 
effective benchmark. 

In this paper, we will first provide a short overview 
of benchmarking from our perspective, followed by the 
motivation for exploring the machine learning domain. 
Next the paper covers how we applied our traditional 
methodology to the problem by developing the 
MLMark™ benchmark1 with a team comprised of 
engineers from Intel, NVIDIA, Arm, TI, Ignitarium, 

                                            
1  https://www.mlmark.org 

Flex, and several other member companies. Lastly, we 
will review data that has been collected to date, with 
some preliminary conclusions. 

2 EEMBC history and motivation 
EEMBC was founded by EDN in 1997 with the 

goal of addressing the lack of benchmarks in the 
embedded microprocessor industry. While desktop 
CPUs had plenty of options due to popularity of the 
Windows operating system, embedded platform 
benchmarks were limited to a few choices, and the 
industry had no standards body to represent its needs. 
After accomplishing its initial goal, EEMBC went on to 
address the changing needs of the industry by expanded 
into areas such as multicore processing; energy 
consumption of the MCU core and its peripherals (e.g., 
SPI, BLE); mobile phones; automated driving; and most 
recently, machine learning. 

In the past, machine learning research depended on 
large and esoteric custom architectures, or in the last 
decade, huge arrays of GPUs or symmetric-core CPUs. 
Recently, an extensive R&D investment and academic 
research in this space has optimized two key variables: 
software efficiency, which has produced smaller, more 
effective neural nets requiring fewer resources (plus 
better-realized APIs to make research more accessible); 
and dedicated hardware acceleration that requires less 
power and has a lower cost. The combined effect of these 
optimizations has pushed these machine-learning 
devices down into EEMBC’s benchmarking domain of 
embedded computing. 
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3 Benchmarks 
A benchmark is a tool for distilling the behavior of 

a complex system into a single number, preferably one 
that increases to indicate the improvement of said 
system in response to an input change. This simple 
measurement capability enables the entire foundation of 
system-performance analysis because every model, every 
decision, every engineering tradeoff requires empirical 
grounding. Here are a few observations EEMBC has 
fostered over the years. 

 
3.1 Benchmark qualities 

For a benchmark to be effective, it must be 
reproducible, transparent, and constrained. 

 

 
 

Reproducible means that the same inputs must 
generate the same output, within a small degree of 
tolerance for systemic or stochastic variation. No 
random components exist unintentionally in the 
benchmarks themselves, and tolerances are 
recommended when comparing scores or certifying 
them. MLMark has no random variation, the same 
images are used for each iteration, and the amount of 
runtime must exceed a certain minimum value to avoid 
timing resolution and operating system asynchronous 
behavior from interfering. MLMark also reports values 
to three significant digits, helping to further filter out 
these variations. 

Transparent means anyone may view the means by 
which a score is generated, including code, algorithms, 
and run-rules. Some EEMBC benchmarks are licensed 
to help fund support and research, while others are 
available at no cost under an augmented Apache 2.0 
license. MLMark is available on GitHub, and in order 
for someone to upload scores to the website database, 

the target source-code implementation must be first 
included in the repository for all to see. 

Constrained, the most nuanced of the three 
requirements, refers to the how the benchmark enables 
flexibility while at the same time facilitating meaningful 
comparisons between very different systems. 

One classic example of trying to maintain 
benchmarking constraints can be seen in the MCU 
CoreMark® benchmark. Consider the execution loops 
within parts of the benchmark, which are always the 
same length. If a compiler were to unroll the loops 
entirely, an MCU might perform better due to lack of 
branch misprediction. This optimization would 
illustrate a best-case scenario for that architecture under 
those fixed-loop conditions. However, if the number of 
iterations were to change by one, the performance would 
drastically change. If an outside observer was not privy 
to the compiler optimization, this discontinuity would 
seem jarring. 

A good benchmark responds to small changes at 
the input with commensurate changes at the output. By 
constraining what is permissible in terms of 
optimizations, this kind of non-intuitive discontinuity 
vanishes. This is generally done with run-rules, which 
are procedural do’s and don’ts, but can also be done by 
in many other ways such as limiting what portions of 
the benchmark may be altered and how, or by selecting 
specific input stimuli used in all measurements. 

Going back to the CoreMark example: this doesn’t 
mean that a developer or manufacturer cannot perform 
loop unrolling to show benefit, but it needs to be clearly 
stated the score was obtained out-of-spec (and thus is 
not valid for upload to the EEMBC database). MLMark 
addresses constraints by putting limiting the input 
datasets and models to specific versions. However, what 
the underlying framework actually does to optimize the 
model is unrestricted. We will discuss this more later 
under accuracy measurement. 

The MLMark benchmark meets all three criteria: 
reproducibility by pre-selecting the exact stimuli and 
models that must be used and accounting for 
measurement precision; transparency by providing the 
source code and conversion scripts used to generate 
published scores, and constrained by only allowing the 
use of certain datasets and rigid run-rules policies while 
still allowing the framework to optimize at its discretion. 

Transparent

Reproducible

Constrained

Benchmark
Qualities
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3.2 Benchmark components 

Embedded benchmarks generally consist of a test 
harness and a workload (see Figure 1). The test harness 
has two jobs: interface the user to the benchmark, and 
interface the benchmark to the hardware. The workload 
is the actual operation(s) of interest to the benchmark. 

 
3.2.1 Test harness 

Historically, embedded devices have lacked the 
capacity to run a highly-advanced operating system. 
Many run “bare metal”, where the workload is the only 
code present in the firmware, with no operating system. 
In these cases, the test harness usually runs on a remote 
operating system and communicates to the device via a 
serial debug port or a USB port. If the hardware has the 
capability, the test harness may also run on the target 
device. 

MLMark is a set of interpreted Python scripts 
intended to run on Linux in version 1.0. MLMark 
provides an API abstraction layer to multiple targets. 
With this abstraction layer, the target may be the host 
CPU, a USB device, an FPGA, or any other type of 
accelerator: it is not relevant to the test harness if the 
DUT is local or remote. Some of the targets require 
interface layers to their frameworks. These are provided 
as libraries which have been pre-compiled for Ubuntu 
16.04, but source code is provided for recompilation on 
different target platforms. 

 
3.2.2 Workload 

A workload consists of a behavioral model defining 
what the device under test actually does during the 
benchmark. This region of execution is fenced by 
timestamps to ensure the measurement happens as close 
to the execution as possible. In earlier benchmarks, the 
workload consisted of C-code that computed a specific 
task, like an FFT kernel, or an emulation of a real-world 
application, like the combination of a state-machine, 
XML parser, and a compression algorithm (see 
CoreMark-PRO). More recent EEMBC benchmarks 
include wireless transfers, security handshakes, etc. 

 

                                            
2 https://github.com/eembc/mlmark 

 
Figure 1. The MLMark software architecture API  between 
test harness and target falls largely on the framework 
boundary. 

In MLMark, the workloads consist of neural-net 
graphs, also known as models. In a similar analogy to 
older C-based benchmarks where the compiler 
optimized the C-code, models are optimized by the 
framework before execution on the hardware. For 
example, in MLMark the model for ResNet-50 is 
provided as a TensorFlow graph. When this is run on 
NVIDIA hardware, the TensorFlow graph is converted 
to a UFF format for NVIDIA hardware. During the 
conversion process, the NVIDIA framework, TensorRT, 
looks for hardware specific optimizations which may 
include a wide variety of operations such as node 
pruning or scheduling to various heterogeneous compute 
elements in the accelerator. The same thing happens 
with Intel hardware through OpenVINO and Google 
TPUs through their TPU compiler. 

In the first version of MLMark, three vision models 
were chosen based on their popularity among academics 
and support from the industry: MobileNet V1.0, a small 
image classification network; ResNet-50 V1.5, a larger, 
more accurate image classifier; and SSDMobileNet v1.0, 
a single-shot detector using MobileNet for classification. 
Refer to the MLMark GitHub repository2 for specific 
copyright information about the authors who graciously 
made these models available to the public. 
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The workloads also require input datasets of 

images. For the classification models, we used the 
ILSVRC2012 dataset which contains over 6.4 GB of 
images. For the object detection model, we used the 
COCO2017 dataset, which is slightly smaller, about 1.3 
GB. Due to copyright licensing limitations, the images 
are not part of the repository, but instructions are 
provided to obtain them. 

 
3.2.3 Scoring and accuracy 

Performance is generally measured in units of work 
per second, where units of work may be iterations of a 
loop, CPU instructions retired, or in the case of 
MLMark V1.0, image inferences. The timing points 
inside MLMark occur on the boundaries of the inference 
operation, after dataset loading, and after retrieving 
inference results. Dataset loading was excluded from the 
timing due the many ways an inference engine may load 
data. Retrieving results was included in the timing loop 
because in order to assess the inference, the data must 
be read back to the host system. However, given the 
amount of time spent on inference, reading back results 
is a very fast operation compared to loading the dataset. 
See Figure 2. 

MLMark produces two different performance 
metrics: throughput and latency. Throughput is simply 
the average inference performance computed by the 
total number of inferences performed within the sum of 
all timing windows. Since version 1.0 of MLMark 
contains image-based inferences, the throughput is the 
same as frames-per-second. 

Latency is measured as the 95th percentile of each 
inference’s timing window, or how long it takes for one 
inference to complete. This statistical designation means 
95% of the time the actual latency will be equal to or 
better than this reported value. This value often differs 
from datasheets, which may report the best-case 
latency. 

 
 

 
Figure 2. Performance is measured at the start of inference 
and the end of result retrieval (TensorFlow example). 

For the workloads used in MLMark, accuracy is 
expressed in reference to ground-truths, which are a set 
of human-annotated results for each input datum. For 
example, during object classification the ground truth 
for an image would be one (or more) categories 
associated with that image (dog, tree, car). For object 
detection, a collection of regions of interest (or ROIs) 
and their associated categories would make up the 
ground truth for that image (e.g., the sub-image at 
rectangle [(10,10),(100,100)] is a dog, with 50% 
confidence). 

The accuracy score depends on the type of 
inference. For classification, it is defined as Top-1 and 
Top-5, which indicate if the ground-truth category 
matched the most confident prediction of the system, or 
if it was one of the Top-5 predictions. For a large 
number of inferences, a perfect score would be a Top-1 
of 100%, meaning for every inference, the system’s top 
prediction was always the ground-truth. 

For object detection, the accuracy measurement is 
much more sophisticated, since not only must the 
system classify an object, it must also detect the 
boundaries of the object in an image. There are many 
degrees of error here: false object detections, incomplete 
bounding boxes, wrong classification for a correct 
bounding box. The method for computing this is known 
as “mean average-precision”, or mAP for short. The 
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details are beyond the scope of this document, but are 
documented in many papers, see: (Hui, 2018), 
(Wikipedia, n.d.), and (Shah, 2018). Since there is also 
a prediction threshold for each detection, MLMark 
limits the threshold to 30% confidence. 

MLMark does not mandate an accuracy threshold. 
Instead, the run rules state that performance numbers 
must always be reported simultaneously with the 
accuracy of the inference. In this way, the benchmark 
explicitly exposes the performance vs. accuracy tradeoff. 

4 ML frameworks 
Each accelerator manufacturer provides a 

framework that enables the user to perform an inference 
on a model. The framework is usually one or more 
libraries. Every accelerator company provides their own 
frameworks, with some integrated into Caffe or 
TensorFlow. All frameworks consist of roughly the same 
API functions: load a graph, optimize it, perform an 
inference, and fetch results. 

Here are a few examples of frameworks found in 
the MLMark target area: 

 
• TensorFlow: a self-contained framework created by 

Google which natively runs on a CPU (and can 
run on a GPU with extensions) 

• TensorFlow Lite (TFLite): a somewhat optimized 
version of TensorFlow targeting edge devices 

• Intel OpenVINO: an expansive API that interfaces 
with Intel CPUs and other accelerators 

• NVIDIA TensorRT: a library that builds on 
CUDA and cuDNN 

• Arm NN: a library built on the Arm Compute 
Library that provides acceleration for Arm CPUs 
with NEON, and Arm GPUs with Mali. 

• Google TPU: the TPU compiler which compiles a 
model into a native binary for their TPU 
accelerator 
 

All of these components in the framework work 
together to make sure the model’s graph is converted to 
an optimal format for the underlying hardware. 

5 Configuration variables that impact performance 
Simply loading the model with the framework and 

providing an input stimulus for inference is half the 
challenge. There are also a number of variables that may 
impact performance. MLMark exposes three of these: 
precision, concurrency, and batching. 

 
5.1 Precision 

The baseline models provided by MLMark encode 
their weights in IEEE 32-bit floating-point format, also 
known as FP32. Since the majority of the math in CNN 
inference involves matrix operations, it is theoretically 
possible to double the efficiency of the network by using 
16-bit floating-point, FP16. This may be IEEE FP16 or 
bfloat16 (a format invented by Google.  Optimizing even 
further) or an 8-bit integer format, INT8, which has 
been gaining popularity because some models show little 
decrease in accuracy when reducing the precision of the 
weights. Typically, converting an FP32 to an INT8 
requires quantization, which means adjusting the 
weights of the model to accommodate the reduced 
fidelity. As a result, MLMark provides pre-quantized 
versions of the models in INT8 format using post-
training integer quantization, or PTIQ (as well as the 
scripts required to do this for oneself). 

The tradeoff here seems straightforward: reducing 
the number of bits in the weight may boost performance 
but also reduce precision of the predictions. However, as 
we will see this is not always the case. Further 
complicating matters, not all frameworks and hardware 
combinations support all precisions. MLMark allows 
configuration to support all available formats on the 
hardware. 
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Figure 3. An illustration of the subtle differences between batching and concurrency. When batching, all inputs must be presented 
to the input of the model at the same time; when running concurrent inferences, each inference may begin once the first stage 
in the pipeline is available.

5.2 Batching and concurrency 
Multiple images may be inferred at the same 

time either through batching or concurrency, or in 
some cases, both. Not all hardware supports these 
capabilities. Figure 3 illustrates the subtle difference 
between the two from an execution timing 
perspective. 

Batching refers to performing multiple inferences 
simultaneous by increasing the dimensionality of the 
layers’ tensors to accommodate more images. For 
example, an input tensor may be of dimension [1, 32, 
32, 24], which would mean one image, 32x32 with 8-
bits per-pixel. By expanding this input tensor to [4, 
32, 32, 24], each successive operation in the graph 
performs four simultaneous inferences since the 
tensors will reshape to accommodate the new data; 
the mathematic operations remain the same. 

Concurrency refers to exploiting the parallel 
nature of the graph as a pipeline. Unlike batching, 
concurrency feeds successive inputs to the model after 
each layer has completed calculation. Concurrency 
may also refer to having multiple instances of the 
same model active at one time, as many as the 
available resources allow. Concurrency is very 

platform dependent because it requires both APIs in 
the framework and hardware features to facilitate 
scheduling. 

The framework and hardware determine which 
method of parallelization are available. In either case, 
significant gains may be realized by utilizing idle 
resources. This is where smaller models have an 
advantage, as more resources may be engaged to 
increase performance. 

6 Methodology 
This section describes how the decisions we made 

affect the constraints on data collection, input format, 
and measurement. 

 
6.1 Input models file formats 

Here we are dealing with a number of different 
frameworks. Some frameworks are designed to read a 
particular file format. For example, TensorRT 
framework has parsers for neural network models in 
Caffe, UFF and ONNX file formats while Google TPU 
can read only INT8 TFLite, and only after being 
compiled for the Edge TPU. We will go through 
details as follows: 
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6.1.1 Native TensorFlow PB format 

TensorFlow PB refers to “protobuf” or “protocol 
buffers.” This format is from Google which is language 
and platform-neutral. (Google, n.d.) It is a mechanism 
for serializing structured data.  Both the graph 
definition and weights are stored together in this file 
format. Thus, this is a convenient way to store a 
neural network model. 

TensorFlow’s model zoo hosts many standard 
neural network models in this format. We are 
considering models in this file format as “golden” 
models. In case a framework cannot read the model in 
this format, a converter is used to convert the model 
in PB format into the appropriate format. 

 
6.1.2 UFF file format 

UFF stands for “Universal Framework Format,” 
Not to be confused with Universal File Format which 
is widely used in CAD domain. This is an NVIDIA 
format “designed to encapsulate trained neural 
networks so that they can be parsed by TensorRT. 
It’s also designed in a way of storing the information 
about a neural network that is needed to create an 
inference engine based on that neural network.” 
(NVIDIA, n.d.) 

 
The V1.0 MLMark release TensorRT target uses 

an UFF parser. However, per NVIDIA’s 
documentation, this format will be deprecated in the 
future. (NVIDIA, 2019) 

 
6.1.3 Conversion process : TensorFlow PB to 

UFF 
TensorFlow PB to NVIDIA UFF conversion 

needs to be done on an x86 machine (laptop or a 
desktop with NVIDIA GPU). This limitation exists 
because TensorRT’s Python API was not supported 
on their Jetson platform and the converter script - 
“convert_to_uff” - needs this Python API. 
Prerequisites are CUDA, cuDNN and TensorRT. The 
“convert_to_uff” utility is part of the TensorRT 
installation. 

The following command is sufficient for simpler 
models like ResNet-50 and MobileNet which have one 

input layer and one output layer. The user can find 
the name of last layer using the command: 

 
$ convert_to_uff input_file.pb -l 

 
This command is also used to convert the UFF 

file: 
 

$ convert_to_uff input_file.pb -o 
output_file.uff -O name_of_output_node 

 
6.1.4 TFLite file format 

TFLite is specially designed for inference on 
embedded devices. The serialization format used in 
TFLite is different from TensorFlow. TensorFlow uses 
“Protocol Buffers” while TFLite makes use of 
“FlatBuffers.”  

As stated by Google CodeLabs: “The primary 
benefit of FlatBuffers comes from the fact that they 
can be memory-mapped, and used directly from disk 
without being loaded and parsed. This gives much 
faster startup times, and gives the operating system 
the option of loading and unloading the required pages 
from the model file, instead of killing the app when it 
is low on memory.” (CodeLabs, n.d.) 

 
6.1.5 TensorFlow to TFLite conversion without 

quantization 
TFLite converter is part of the TensorFlow 

installation. The converter takes the output file name, 
input model in PB format, and the names of the input 
and output layers, e.g.: 

 
% tflite_convert \ 
--output_file=foo.tflite \ 
--graph_def_file=Mobilenetfrozen_graph.pb \ 
--input_arrays=input \ 
--output_arrays=\ 
MobilenetV1/Predictions/Reshape_1 

 
The TFLite converter applies many 

optimizations apart from quantization which 
improves performance of the model, such as pruning 
unused graph-nodes, and joining operations into more 
efficient composite operations. 

In practice, it is observed that just the format 
conversion from PB to TFLite gives significant 
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performance improvement without even quantization. 
See the results section on TensorFlow versus TFLite. 

 
6.2 Eight-bit integer (INT8) datatypes 

 
6.2.1 Why quantize? 

Typically, training happens in FP32 where all of 
the weights and biases are 32-bit IEEE floats. It is 
possible to tradeoff some accuracy and reduce model 
size to one-fourth of its original by quantizing the 
model. 

INT8 quantization is trending in the embedded 
inference world. The methodology for generating, and 
the usage of INT8 quantified models vary from 
framework to framework. For example, TensorRT 
contains the code to create an optimized INT8 
inference engine on the fly, while the Google Edge 
TPU needs a pre-quantized INT8 model as an input. 

 
6.2.2 Model optimization by framework: 

TensorRT  
TensorRT needs a small image dataset of around 

1000 images for INT8 calibration. This calibration 
image dataset is usually a subset of the validation 
dataset. Calibration is a one-time process, meaning 
once the engine has been created it can be reused for 
subsequent inference engine generation. The output of 
this process is called a “Calibration Table File” and is 
generally quite small (few KB).  

 
6.2.3 Post-training full-integer quantization: 

PTIQ 
TFLite now supports converting all model values 

(weights and activations) to 8-bit integers when 
converting from TensorFlow to TFLite’s flat-buffer 
format. This results in four times reduction in model 
size. It also boosts performance 3-4x on a CPU. 
Furthermore, this fully quantized network model can 
be deployed on integer-only hardware accelerators. 

The post-training quantization method stores 
only the weights as 8-bit integer, but this full-integer 
quantization method statically quantizes all weights 
and activations. (TensorFlow, n.d.) 

 
6.2.4 TFLite compiled for Edge TPU 

Google’s Edge TPU is able to run only INT8 
TFLite models. A model also needs to be compiled 
with edge TPU compiler. The compiler creates a 
single custom operation (binary) for all Edge TPU 
compatible ops, until it reaches an unsupported op. 
The remaining layers stay in their non-binary format 
and are run on the CPU or host. 

The Edge TPU compiler is a command-line tool 
which requires very little setup, e.g.: 

 
$ edgetpu_compiler [options] model.tflite 
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7 Results and observations 
After the initial release of MLMark, several 

dozen scores were collected on available edge 
hardware. During the coming months we will continue 
to add new scores and targets to the repository. Note 
that many new accelerators are not represented due 
to MLMark’s first rule of transparency: the 
implementation must be published along with the 
score. The following sections discuss the first round of 
observations.  

Figure 4 combines several results on different 
hardware, workloads and precision formats into one 
chart. For each device, all three workloads are 
presented, color coded by the weight precision. (Note 
that some of the Arm devices do not have 
SSDMobileNet scores, this is due to an API limitation 
at the time of collection.) Due to the extreme range 

in performance, the data is presented in log format. 
The units can interchange frames and inferences, since 
a single inference call to the API requires one image 
frame as an input, and produces one inference 
summary (classifications, detections, etc.). For devices 
that reported scores at more than one batch or 
concurrency setting, the highest score from the setting 
was chosen per workload. Raw data can be found at 
the MLMark website, www.mlmark.org. 

It should come as no surprise that there are 
orders of magnitude difference in this chart. After all, 
we are comparing quad-core Cortex-A5X/A7X 
devices to hundred-core dedicated neural accelerators. 
The purpose of this paper is not to make marketing 
claims, but to take a snapshot in time of the state of 
the industry to serve as the leftmost point on a trend 
graph that will span decades.

 

 
Figure 4. MLMark overall results (as of 2019-11-05); Each cluster of scores was produced by a specific device; three workloads 
are illustrated, at three different precisions at a single batch & concurrency setting.  
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7.1 Performance by class 
Figure 5 below plots all performance scores 

against three basic technology classes: CPU, GPU and 
accelerator. When grouped by technology class, the 
results show CPU as being the lowest performing, 
GPU the highest, and accelerators spanning a middle 
range. Note that the only CPUs used in the results 
were Arm Cortex A5X/A7X-class. 

 

 
Figure 5. Performance grouped by technology class.  

7.2 Performance gains from decreasing precision 
One would expect moving from FP32 to FP16 

would yield a doubling of performance. This was not 
observed (Table 1) in the three devices that supported 
both formats. 

 
 FP16 FP32 % Increase 
Jetson Xavier AGX (fps) (fps)  

MobileNet 1.0 547 367 33% 
ResNet-50 1.0 291 128 56% 
SSDMobileNet 1.0 171 128 25% 

Jetson Nano    
MobileNet 1.0 62.7 55.3 12% 
ResNet-50 1.0 38.4 21.2 45% 
SSDMobileNet 1.0 25.3 22.4 11% 

HiKey970, Mali G72    
MobileNet 1.0 68.0 45.6 33% 
ResNet-50 1.0 16.7 10.5 37% 

Table 1. Comparison of FP32 vs. FP16 performance across 
targets that support both. 

 

7.3 Batching and concurrency 
In Figure 6, the batch size was increased on the 

NVIDIA Jetson Xavier from 1 (a single image) to 32 
simultaneous images per call to the inference engine 
for the MobileNet V1.0 workload. TensorRT also 
supports concurrent streams, which are plotted 
against the batch data for similar input sizes. Latency 
at the 95th percentile is plotted on the secondary 
vertical axis. While batching shows a significant 
increase in performance at the start of the curve, ROI 
begins to decrease rapidly after 16 images. Latency for 
batching is relatively linear. Concurrency shows no 
increase in throughput and even worse latency. 

 

 
Figure 6. Batching and concurrency using TensorRT on 
the NVIDIA Xavier AGX platform. 
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Figure 7. Batch performance depends on available compute 
resources; Xavier AGX has more available resources than 
the Nano, hence it obtains better batch performance. 

7.4 Precision type impact to accuracy 
When using lower precision datatypes for 

weights, conventional wisdom expects accuracy to 
decrease by some amount. Figure 8 plots all accuracy 
values (mAP and Top-1%) against all throughputs for 
different datatype precision; hardware, model and 
target are intentionally excluded simply to see larger 
trends. The results indicate that there is 
approximately 5% or less variation in accuracy across 
32-, 16- and 8-bit datatypes when viewed as precision 
clusters, and the inverse relationship isn’t an inherent 
property of the models used. 

 

 
Figure 8. Change in precision versus performance for all 
hardware, targets, models and configurations. 

7.5 Model format optimizations 
The Arm NN API provides a single-line change 

in the code to switch between TensorFlow (protobuf) 
and TensorFlow Light (FlatBuffer) models. This 
enabled us to look at the same hardware, same 
precision, and the same graph, but with a different 
architectural representation of that graph. A 5-10% 
improvement can be seen. 

 

 
Figure 9. Observing the difference in performance between 
model formats. 
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In an attempt to assess cost and performance, we 

compare the lowest selling price of the hardware 
platform to their best score on MobileNet (since this 
generally is the best performance model on all 
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second, per dollar spent, the accelerators exceed the 
only CPU in the study by a large margin. There are 
three distinct strata in Table 2, low [0,0.1], medium 
(0.1,0.7], and high [0.7,2.4]. Additional data will be 
very insightful over time. 

 
Platform & Accelerator fps/US$ 

Jetson Xavier AGX, Volta 2.4 

Coral Dev Board, Edge TPU 2.3 

Neural Compute Stick 2, Myriad X 0.7 

Jetson Nano, Maxwell 0.6 

HiKey970, Arm Mali G72 M12 0.2 

HiKey970, Arm Cortex-A73 0.1 

Coral Dev Board, i.MX8M Cortex-A53 0.1 

Table 2. Performance-per-dollar comparison, where cost is 
the price of the entire platform, not simply the processor. 

7.7 Other unusual observations 
Every component in the benchmark chain—

except the test-harness—is experiencing a rapid state 
of revision: some frameworks have monthly releases, 
and others like TensorFlow have nightly patches. As 
a result, we often found ourselves re-running 
experiments with multiple versions of frameworks in 
an attempt to be as fair as possible. Here are some of 
the more puzzling instances we observed. 

 
7.7.1 TensorFlow Light lags TensorFlow on 

x86_64 for the same precision 
It is observed that TFLite runs slower than 

TensorFlow on a x86-64 machine. The following 
comparison was made on an Intel i3 laptop running 
Ubuntu 16.04 and TensorFlow 1.15.0rc2: 

 
Workload, Precision Target Framework FPS on x86_64 
MobileNet, FP32 TensorFlow 31.7 
MobileNet, FP32 TFLite 30.2 

 
Following comparison was made on a i3 laptop 

running ubuntu 16. TF version is 1.15.0rc2.  The 
actual reason is explained in this stack overflow 
answer: “Existing TensorFlow Lite op kernels are 
optimized for ARM processor by using NEON 
instruction set. If SSE is available, it will try to adapt 
NEON calls to SSE, so it should be still running with 

some sort of SIMD. Still this code path remains un-
optimized.” (tehtea, 2019) 

 
7.7.2 FP32 TFLite outperforms INT8 on x86_64 

architecture 
There is a huge performance gap between FP32 

and INT8, in the opposite direction of expectations, 
when running on x86_64 compared to other 
architectures. The following comparison was made on 
an Intel i3 laptop running Ubuntu 16.04 and 
TensorFlow 1.15.0rc2: 

 
Workload, Precision FPS on x86_64 
MobileNet, FP32 30.2 
MobileNet, INT8 0.331 

 
This could be related to TFLite optimizations for 

Arm but not x86, as found in this TensorFlow issue: 
“[This is likely because quantized INT8 requires an 
ARM NEON to be faster than float. On a PC float 
runs better. This is because quantized int relies on 
special instructions that have not been emphasized on 
intel x86_64.]” (abhi-rf, 2018) 

8 Conclusions 
First and foremost, the wide range of 

performance values measured and the fragile nature 
of the software during the process is indicative of a 
nascent industry on the left-hand side of the 
“innovation-optimization” pendulum. In one case, 
simply updating software to a minor version release of 
a mature framework exposed a 40% performance 
increase. It is not clear that the results in this paper 
will even be the same in six months on the very same 
hardware. 

However, we can conclude that some early 
assumptions are correct, such as performance gains 
made from decreasing the precision of the neural-net 
weights have had only minimal impact on accuracy. 
The accuracy decrease is not as severe as one would 
expect, a 5% decrease in accuracy compared to a 75% 
decrease in data size. Sensitivity to precision still 
remains a function of other variables besides the 
hardware, it remains to be seen if these other formats 
will continue to persist.  
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We’ve also seen that neural nets pose an 
interesting scalability artifact: parallelism is inherent 
in tensor math and can be accessed through batching 
simultaneous operations on the same model, however 
there needs to be enough resources available to see 
this gain. 

In terms of performance per dollar, the small 
number of CPU and GPU scores in the results don’t 
make a clear case for accelerator dominance, but we 
can see trends emerging in dollars that favors the 
accelerators. 

9 Future 
We will continue to add scores, targets, and 

models. Already we have observed huge performance 
increases in the latest versions of drivers which have 
not been captured in this document. Future studies 
we would like to pursue include performance mapping 

to historical data and power analysis. Converting the 
model performance numbers into TOPS (trillions-of-
operations per second) would enable us to map 
performance on to historical trends. Power 
consumption was excluded since most of the boards 
did not have power-plane isolation, meaning overall 
platform scores would include NIC, USB and other 
ancillary power unrelated to the accelerator. 
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